Sains Malaysiana 54(11)(2025): 2697-2705

http://doi.org/10.17576/jsm-2025-5411-10

 

Synthesis, Acetylcholinesterase and Molecular Modelling Analysis of (3E,5E)-3,5-Diarylidene-1-Phenylethylpiperidine-4-One Derivatives as a Therapeutic Agent for Alzheimer’s Disease
(Sintesis, Asetilkolinesterase dan Analisis Pemodelan Molekul Terbitan (3E,5E)-3,5-Diarilidena-1-Feniletilpiperidina-4-One sebagai Agen Terapeutik untuk Penyakit Alzheimer)

 

MOHD KHAIRUL NIZAM MAZLAN1,2,3,4, MOHAMAD NURUL AZMI4, AGUSTONO WIBOWO1,5, MOHD SALLEH ROFIEE2,6, MUNTAZ ABU BAKAR7, MUHAMMAD SOLEHIN ABD GHANI4, MOHAMMED TASYRIQ CHE OMAR8, THAIGARAJAN PARUMASIVAM9 & MOHD FAZLI MOHAMMAT1,2,*

 

1Organic Synthesis Research Laboratory, Institute of Science (I.O.S), Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Collaborative Laboratory for Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11900 Minden, Penang, Malaysia
4Natural Products and Synthesis Organic Research Laboratory (NPSO), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
5Faculty of Applied Sciences, Universiti Teknologi MARA Pahang Branch, 26400 Bandar Tun Razak, Pahang, Malaysia
6Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
7Department of Chemical Sciences, Faculty of Science & Technology. Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

8Biological Section, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
9School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

Received: 20 June 2025/Accepted: 23 October 2025

 

Abstract

New diarylidiene-1-phenylethylpiperidine-4-one derivatives 2a-h were successfully synthesised with yields ranging from 57% to 96% and characterised with various spectroscopic methods. The compounds were evaluated for their in vitro acetylcholinesterase inhibition activity with galantamine as positive control. Among the synthesised compounds, compounds 2g and 2h were found to be most potent against acetylcholinesterase enzyme with half-maximal inhibitory concentration (IC50) of 46.3 ± 0.53 µM and IC50 = 29.7 ± 0.41 µM, respectively. The binding energy and interaction of compounds 2g and 2h with acetylcholinesterase protein were further studied through molecular docking studies. Compound 2h (-12.1 ± 0.0 kcal mol-1) showed a strong binding affinity than compound 2g (-10.6 ± 0.0 kcal mol-1) and both compounds exhibit several binding interactions with amino acids in acetylcholinesterase protein. The molecular docking studies of these compounds supports the in vitro acetylcholinesterase inhibition activity, suggesting that diarylidene phenylethyl-1-piperidone scaffold might be a promising drug candidate for a new acetylcholinesterase inhibitor drug development.

Keywords: Acetylcholinesterase inhibitor; Alzheimer's disease; diarylidene; molecular docking; piperidone

 

Abstrak

Sebatian terbitan baharu diarilidena-1-fenetilpiperidina-4-one 2a–h telah berjaya disintesis dengan peratusan hasil antara 57% hingga 96% dan dicirikan menggunakan pelbagai kaedah spektroskopi. Penilaian terhadap aktiviti perencatan enzim asetilkolinesterase secara in vitro telah dijalankan dengan galantamina sebagai kawalan positif. Dalam kalangan sebatian yang disintesis, sebatian 2g dan 2h didapati menunjukkan keupayaan paling kuat dalam perencatan enzim asetilkolinesterase dengan nilai kepekatan perencatan (IC50) masing-masing 46.3 ± 0.53 µM dan 29.7 ± 0.41 µM. Tenaga pengikatan dan interaksi antara sebatian 2g dan 2h dengan protein asetilkolinesterase telah dikaji dengan lebih lanjut melalui analisis pengedokan molekul. Sebatian 2h(-12.1 ± 0.0 kcal/mol) menunjukkan tenaga pengikatan yang lebih tinggi berbanding sebatian 2g(-10.6 ± 0.0 kcal/mol) dan kedua-dua sebatian membentuk beberapa interaksi dengan asid amino dalam protein asetilkolinesterase. Kajian pemadanan dok molekul ini menyokong keputusan aktiviti perencatan secara in vitro, sekali gus mencadangkan bahawa sebatian diarilidena piperidona berpotensi sebagai calon drug untuk pembangunan perencat asetilkolinesterase yang baharu.

Kata kunci: Diarilidene; pengedokan molekul; penyakit Alzheimer; perencat asetilkolinesterase; piperidona

 

REFERENCES

Aysegul, K.I., Sıcak, Y., Uysal, D.B., Tugba, T.T., Ozturk, M. & Oruc, E.E.E. 2025. Chiral thioureas containing naphthalene moiety as selective butyrylcholinesterase inhibitors: Design, synthesis, cholinesterase inhibition activity and molecular docking studies.  Journal of Molecular Structure 1319: 139333.

Bai, R., Guo, J., Ye, X.Y., Xie, Y. & Xie, T. 2022. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Research Reviews 77: 101619.

Chen, Y. & Yu, Y. 2023. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. Journal of Neuroinflammation 20(1): 165.

Chen, Z.R., Huang, J.B., Yang, S.L. & Hong, F.F. 2022. Role of cholinergic signaling in Alzheimer’s disease.  Molecules 27(6): 1816.

David, B., Pascal, S., Philipp, S., Jorg, P. & Gohlke, H. 2021. Discovery of new acetylcholinesterase inhibitors for Alzheimer’s disease: Virtual screening and in vitro characterisation. Journal of Enzyme Inhibition and Medicinal Chemistry 36(1): 491-496.

Gong, C.X., Dai, C.L. Liu, F. & Iqbal, K. 2022. Multi-targets: An unconventional drug development strategy for Alzheimer’s disease. Frontiers in Aging Neuroscience 14: 837649.

Guevara-Salazar, J.A., Espinoza-Fonseca, M., Beltrán, H.I., Correa-Basurto, J., Zavala, D.Q. & Trujillo-Ferrara, J.G. 2007. The electronic influence on the active site-directed inhibition of acetylcholinesterase by N-aryl-substituted succinimides. Journal of the Mexican Chemical Society 51(4): 222-227.

Idris, M., Parumasivam, T., Awang, K., Zahari, A., Litaudon, M., Apel, C., Supratman, U., Che Omar, M.T. & Azmi, M.N. 2025. Bioassay-guided isolation of acetylcholinesterase and butyrylcholinesterase inhibitors from Horsfieldia tomentosa fruits (Myristicaceae).  Phytochemistry Letters 65: 133-140.

Ivanova, L. & Karelson, M. 2022. The impact of software used and the type of target protein on molecular docking accuracy. Molecules 27(24): 9041.

Ju, Y. & Tam, K.Y. 2022. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regeneration Research 17(3): 543-549.

Kia, Y., Osman, H., Kumar, R.S., Murugaiyah, V., Basiri, A., Perumal, S., Wahab, H.A. & Bing, C.S. 2013. Synthesis and discovery of novel piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent cholinesterase inhibitors.  Bioorganic & Medicinal Chemistry 21(7): 1696-1707.

Mohamed Yusoff, N., Osman, H., Katemba, V., Abd Ghani, M.S., Supratman, U., Che Omar, M.T., Murugaiyah, V., Xiang, R., Six, Y. & Azmi, M.N. 2022. Design, synthesis and cholinesterase inhibitory activity of new dispiro pyrrolidine derivatives. Tetrahedron 128: 133115.

Moreira, N.C.d.S., Lima, J.E.B.d.F., Marchiori, M.F., Carvalho, I. & Sakamoto-Hojo, E.T. 2022. Neuroprotective effects of cholinesterase inhibitors: Current scenario in therapies for Alzheimer’s disease and future perspectives. Journal of Alzheimer's Disease Reports 6(1): 177-193.

Ong, S.C., Tay, L.X., Ong, H.M., Tiong, I.K., Ch‘ng, A.S.H. & Parumasivam, T. 2025. Annual societal cost of Alzheimer’s disease in Malaysia: A micro-costing approach. BMC Geriatrics 25(1): 154.

Porsteinsson, A.P., Isaacson, R.S., Knox, S., Sabbagh, M.N. & Rubino, I. 2021. Diagnosis of early Alzheimer's disease: Clinical practice in 2021. The Journal of Prevention of Alzheimer's Disease 8(3): 371-386.

Schwarzinger, M. & Dufouil, C. 2022. Forecasting the prevalence of dementia. The Lancet Public Health 7(2): 94-95.

Silva, L.B., Ferreira, E.F.B., Maryam, Espejo-Román, J.M., Costa, G.V., Cruz, J.V., Kimani, N.M., Costa, J.S., Bittencourt, J.A.H.M., Cruz, J.N., Campos, J.M. & Santos, C.B.R. 2023. Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach. Molecules 28(3): 1035.

Vecchio, I., Sorrentino, L., Paoletti, A., Marra, R. & Arbitrio, M. 2021. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. Journal of Central Nervous System Disease 13: 11795735211029113.

Vinuesa, A., Pomilio, C., Gregosa, A., Bentivegna, M., Presa, J., Bellotto, M., Saravia, F. & Beauquis, J. 2021. Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease. Frontiers in Neuroscience 15: 653651.

Wu, T., Lin, D., Cheng, Y., Jiang, S., Riaz, M.W., Fu, N., Mou, C., Ye, M. & Zheng, Y. 2022. Amyloid cascade hypothesis for the treatment of Alzheimer's disease: Progress and challenges. Journal of Aging and Diseases 13(6): 1745-1758.

Xi, R., Liwei, J., Meijie, Q., Hassan, S.S.U. & Zongchao, L. 2021. Enhancing therapeutic efficacy of donepezil by combined therapy: A comprehensive review. Current Pharmaceutical Design 27(3): 332-344.

Zhang, N., Yu, X., Xie, J. & Xu, H. 2021. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Molecular Neurobiology 58(6): 2812-2823.

Zhuang, T., Xiong, J., Ren, X., Liang, L., Qi, Z., Zhang, S., Du, W., Chen, Y., Liu, X. & Zhang, G. 2022. Benzylaminofentanyl derivates: Discovery of bifunctional opioid and receptor ligands as novel analgesics with reduced adverse effects. European Journal of Medicinal Chemistry 241: 114649.

 

*Corresponding author; email: mnazmi@usm.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous

next